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Electric Power on Aircraft

• Electric power demands on aircraft are increasing

– More electric subsystems (replace hydraulic systems with 

electric, etc.)

– More electrically intensive payloads (especially UAVs)

– Serious consideration being given to future ‘all electric’ aircraft

• Impact on fuel consumption is becoming important
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Electric Power on Aircraft

• As ζ increases, efficiency of electrical power generation 

has greater impact on vehicle range and endurance

– Especially true for UAVs which have high electrical power 

requirements and relatively low propulsive power demands

• Most modern aircraft meet electrical demands using 

mechanical generators driven by the main propulsive 

engine(s) or stand-alone auxiliary power units (APUs)

– Both methods are relatively inefficient because they are driven 

by heat engines
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Fuel Cells

• Fuel cells offer more direct and efficient means of 

converting fuel energy to electric power

– 50-60% in systems without heat recovery cycles [1] vs. 20-40% 

for typical gas turbine [2,3]

• Disadvantage:

– Require complex system of pumps, blowers, sensors, controllers 

(‘balance of plant’)

• Add complexity, cost, and mass

• Extra mass substantially lowers specific power

– Order of hundreds of W/Kg for stand-alone fuel cell vs. thousands of 

W/Kg for heat engine 

• Reduce efficiency advantage of electrochemical generation
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Gas Turbine-Integrated Solid Oxide Fuel Cell

• Integrating a catalytic partial oxidation reactor (CPOx) 

and solid oxide fuel cell (SOFC) with a gas turbine is a 

promising solution to the balance of plant problem 

– GT provides air to SOFC, eliminating blowers / pumps

– GT air is pressurized, allowing higher efficiency and power 

density than atmospheric pressure FCs

– Heat losses from CPOx and SOFC are captured by bypass air in 

the FC duct and directed back through the Brayton cycle

– Unreacted fuel from the SOFC is directed into the GT combustor 

to contribute to the Brayton cycle
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Literature Review

• Stationary terrestrial power generation applications

• Airborne applications

– APU: designed as direct replacement for existing APU 

technology

– High altitude (50-70 kft), very long endurance (days to weeks)

• Places premium on system efficiency
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Typical layout in previous studies Layout in UMD model



Literature Review: Summary
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Previous Work at UMD

• Integrated GT-SOFC concept is very promising

– Developed most advanced CPOx and SOFC models for GT-

SOFC studies [4]

– Produced first advanced system modeling tool for GT-SOFC 

integrations for combined propulsion AND electrical power on 

A/C [4]

– Large reductions in fuel consumption relative to GT-generator 

systems are thermodynamically possible [5]

– GT-SOFC can produce more electrical power than GT-generator 

because of TIT limits [5]
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Objective

• Begin process of experimental validation by developing a 

small, laboratory-scale hybrid GT-SOFC prototype at a 

scale suitable for a small UAV

– Confirm experimentally the performance advantage of integrated 

GT-SOFC system predicted by existing numerical model  

– Validate model and develop optimized integration strategies for 

larger platforms   
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Approach

• Select an appropriate engine – AMT Olympus

• Develop a model of the system in NPSS

• Measure engine performance on thrust stand

– Calibrate NPSS model

– Confirm range of possible FC operating parameters (flow rate, 

gas Temp., etc.)

• Add CPOx/SOFC model to engine system model

– Use previously developed fuel cell models

– Hopefully, we will be able to identify a suitable off-the-shelf FC 

stack

• Modify engine to incorporate the FC stack

• Test integrated system
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Platform Selection

• AMT Olympus in ‘University Configuration’

– Small (50 lb thrust class) turbojet engine

– Factory-installed temperature/pressure measuring points

– Compressor performance map available
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http://www.amtjets.com/pdf/University-

Olympus-HP-Jan-2013.pdf



AMT Olympus 
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Reasons for Selecting AMT Engine

• Indoor facilities limited to engines <= 200 lb thrust

• Availability of pre-installed measurement ports

– Significant time savings

– Limits risk of tampering with flow path

• Availability of compressor map

– Needed for modeling effort but most companies won’t divulge

– One less thing to measure

• Other performance data are also available

– Prof. Harald Funke – Aachen University of Applied Sciences, 

Aachen, Germany
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Numerical Propulsion System Simulation

• Modeling in this work is implemented in the framework of 
Numerical Propulsion System Simulation (NPSS)

• NPSS was developed by NASA to simulate gas turbine 

engines (but equally applicable for many thermodynamic 

systems)

• Built in quasi-Newton method solver

• Multiple built in thermodynamics packages (including 

chemical equilibrium, via CEA)

• System models are assembled from ‘elements’
– Library of ‘standard’ pre-made GT components

– Incorporates user defined components written in object oriented 

programming language

• An emerging standard in Aerospace simulation (used by 

major engine manufactures, NASA, DoD)
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System Model
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NPSS Thermodynamic Model of Olympus 

Design Conditions (Full Throttle)

RPM 108,500

Air Flow Rate (lbm/sec) 0.99

Compressor Total 

Pressure Ratio (P03/P02)

3.8

Compressor Efficiency 0.72

Fuel Type Jet A

QLHV (BTU/lbm) 18486.7

Fuel Flow Rate (lbm/sec) 0.0235

Turbine Total Pressure 

Ratio (P04/P05)

2.098

Turbine Efficiency 0.80

• Using compressor map 

provided by AMT

• Using low pressure turbine 

map provided with NPSS 

software [7]

• Comparing NPSS temperature 

and pressure predictions at 

axial stages along engine to 

experimental data provided by 

Prof. Funke
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Olympus Compressor Map
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Olympus Turbine Map

• Turbine map for Olympus is unavailable

– Neither AMT nor Prof. Funke could provide map

• As a result, we are using a low pressure turbine map 

provided with NPSS [7]

– NPSS scales the map linearly in three axes [8] based on the 

input design conditions

– Turbine design efficiency of 0.80 was chosen to match the 

measured performance
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Axial Stage Pressures
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Axial Stage Temperatures
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Combustor Heat Loss

• Is temperature discrepancy caused by heat loss?

• No

– Little reduction in discrepancies in T04 predictions as Q increases

– Unable to converge if heat loss is too large
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Why does NPSS not converge?

• Turbine design parameters are on the edge of unscaled 

turbine map

– Design turbine pressure ratio (P04/P05) is about 2.0; the lowest 

pressure ratio on unscaled map is 2.0

• NPSS likely having issues when it must interpolate/extrapolate 

values based on pressure ratios lower than 2.0

• Will be able to generate turbine performance map for 

Olympus from our own experimental measurements

• Still investigating source of NPSS solver’s inability to 

converge on solution with added heat loss in combustor 
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T04 Radiation Corrections
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• Checked radiation correction to see if this is a 

contributing factor to T04 discrepancy

– Preliminary results indicate no

– Apply conduction correction next

• Likely main causes

– Wrong turbine efficiency

– Unrealistic combustion model (need to incorporate multi-species 

and Cp(T)



Preliminary Noise Box Design

• Need acoustic/containment 

housing for engine for safe 

operation and to accommodate 

modifications to engine

• Box made from plywood

– Rigid in case of catastrophic 

engine failure

• Interior walls insulated with 

sound-proofing material (fire-

proof denim insulation)

• Consideration

– How to seal dividing wall over 

compressor end of engine and 

thrust stand
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Preliminary Noise Box Design

• Thrust stand calibrated with known weights on pulley system

• ‘noise baffle’ used to absorb sound waves from compressor

– Needs to be sufficiently large enough to absorb sound but small enough to 

prevent significant obstruction of airflow

• Incoming airflow will be directed through single inlet so flow rate can 

be measured with laminar flow element
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Next Steps

• Complete construction of acoustic housing

• Make measurements and calibrate NPSS model

– Generate own turbine map 

• Incorporate fuel cell elements into NPSS model

• Identify suitable off-the-shelf FC stack for integration

• Use NPSS model to predict performance of integrated 

Olympus-SOFC system

• Begin physical integration
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